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Principal Component Analysis (PCA)

Part II – To find the right projections - Intuition
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Formalism: Projection
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Exercise 1 Reducing dimensionality of dataset

Can you find a way to reduce the amount of information needed to 

store the coordinates of these 4 datapoints?
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Exercise 1 Reducing dimensionality of dataset

1[ ]A a

1a

The optimal projection is a line that entails the correlation across the first 

and second coordinates: 2 12x x
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If you use the same solution as before, how much error do you get?
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If you use the same solution as before, how much error do you get?

Exercise 2 Reducing dimensionality of dataset
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Example:  2-dimensional projection through a matrix A
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Constructing a projection: Exercise 3
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Find a matrix A which groups 

the points into 4 groups.
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Example:  2-dimensional projection through a matrix A
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clusters
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Constructing a projection: Exercise 3
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Example:  2-dimensional projection through a matrix A

Constructing a projection

1a

2a

 1 2The rows of    are composed of two orthonormal vectors: , . 

The product of each  with each datapoint  corresponds to the coordinate of 

the image  of the point  in the projected space.
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Example:  2-dimensional projection through a matrix A

Constructing a projection

3 2

The columns of    represent the images (in the projected space) of the axes of the 

original space ( ); in the example, the first two columns form a basis of .

A

Projections 1 & 2
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PCA: Reduction of dimensionality

1x

2x

What is the 2D to 1D projection that minimizes the reconstruction error?

Infinite number of choices for projecting the data 

 need criteria to reduce the choice

1: minimum information loss (minimal reconstruction error) 
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Infinite number of choices for projecting the data 

 need criteria to reduce the choice 

1x

2x

What is the 2D to 1D projection that minimizes the reconstruction error?

1: minimum information loss(minimal reconstruction error)

2: equivalent to finding the direction with maximum variance  

1x

2x
Smallest breadth of 

data lost

Largest breadth of 

data conserved

Reconstruction after projection

PCA: Reduction of dimensionality


