

# APPLIED MACHINE LEARNING

## *Principal Component Analysis (PCA)*

*Part II – To find the right projections - Intuition*

# Formalism: Projection

Let  $X = [x^1 \dots x^M]$  a set of  $M$   $N$ -dim. datapoints,  $x^i \in \mathbb{R}^N$ ,  $i = 1 \dots M$ .

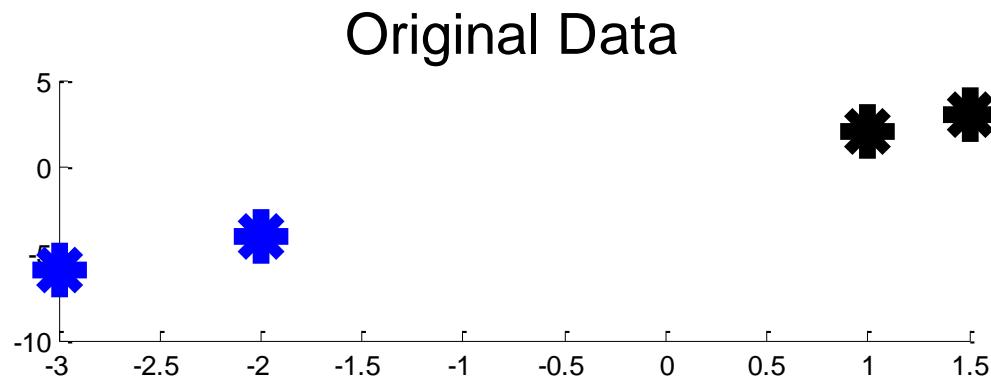
A projection  $Y$  of  $X$  through a linear map  $A : x \in \mathbb{R}^N \rightarrow y \in \mathbb{R}^p$ ,  $p \leq N$  is given by:  $Y = A \cdot X$ .

$$X : N \times M$$

$$A : p \times N \text{ and } p \leq N$$

$$Y : p \times M$$

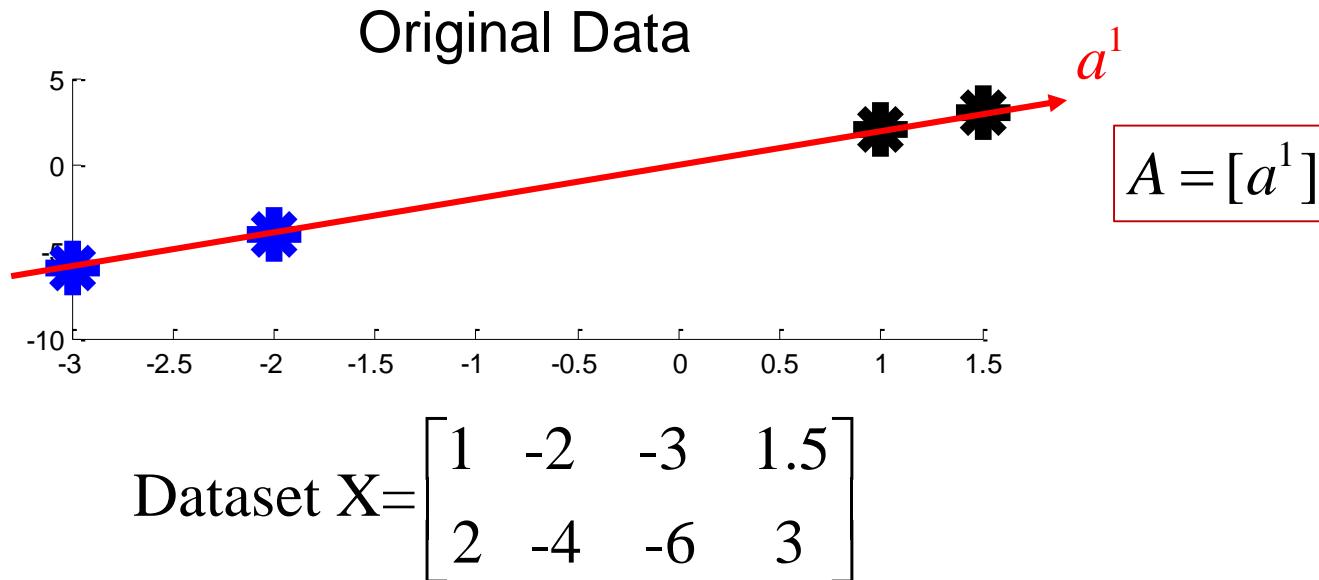
## *Exercise 1 Reducing dimensionality of dataset*



$$\text{Dataset } X = \begin{bmatrix} 1 & -2 & -3 & 1.5 \\ 2 & -4 & -6 & 3 \end{bmatrix}$$

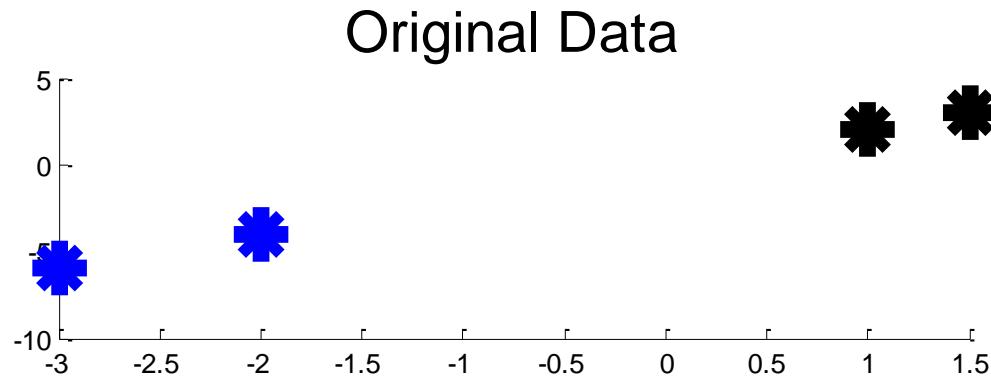
Can you find a way to reduce the amount of information needed to store the coordinates of these 4 datapoints?

## Exercise 1 Reducing dimensionality of dataset



The optimal projection is a line that entails the correlation across the first and second coordinates:  $x_2 = 2x_1$

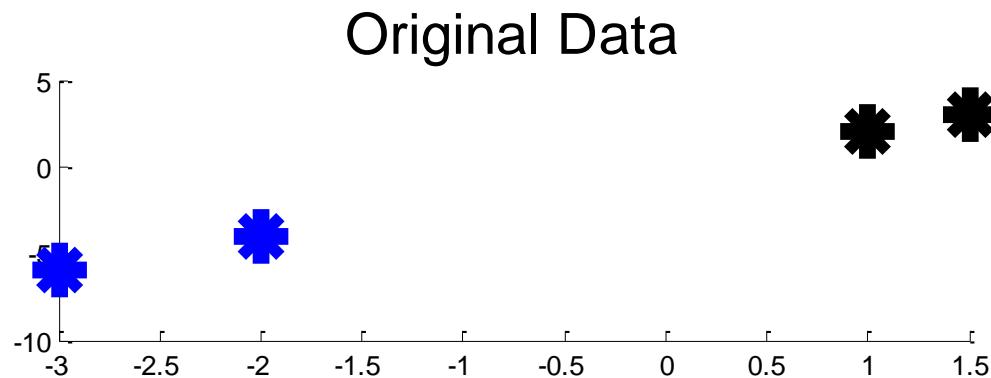
## *Exercise 2 Reducing dimensionality of dataset*



Dataset  $X = \begin{bmatrix} 1.1 & -2 & -2.9 & 1.5 \\ 2 & -4 & -6.2 & 3 \end{bmatrix}$

If you use the same solution as before, how much error do you get?

## ***Exercise 2 Reducing dimensionality of dataset***



$$\text{Dataset } X = \begin{bmatrix} 1.1 & -2 & -2.9 & 1.5 \\ 2 & -4 & -6.2 & 3 \end{bmatrix}$$

If you use the same solution as before, how much error do you get?

Root MSQ:  $\left[ \begin{array}{cccc} 1.1 & -2 & -2.9 & 1.5 \\ 2 & -4 & -6.2 & 3 \end{array} \right]$  versus  $\left[ \begin{array}{cccc} 1.1 & -2 & -2.9 & 1.5 \\ 2.2 & -4 & -5.8 & 3 \end{array} \right]$

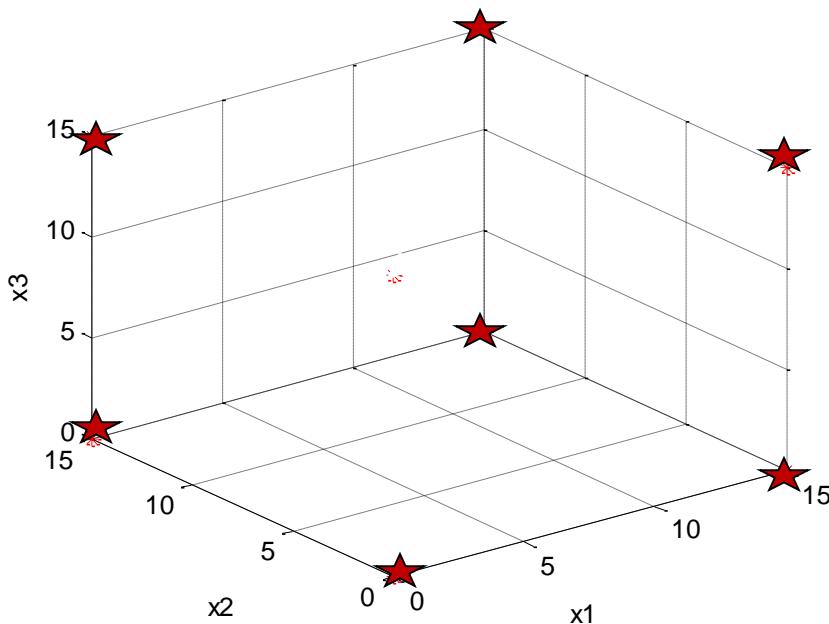
*Error* is 0.45.

# Constructing a projection: Exercise 3

Example: 2-dimensional projection through a matrix A

$$X = \begin{bmatrix} 0 & 15 & 0 & 15 & 0 & 15 & 0 & 15 \\ 0 & 0 & 15 & 15 & 0 & 0 & 15 & 15 \\ 0 & 0 & 0 & 0 & 15 & 15 & 15 & 15 \end{bmatrix}$$

Original data X



**Find a matrix A which groups the points into 4 groups.**

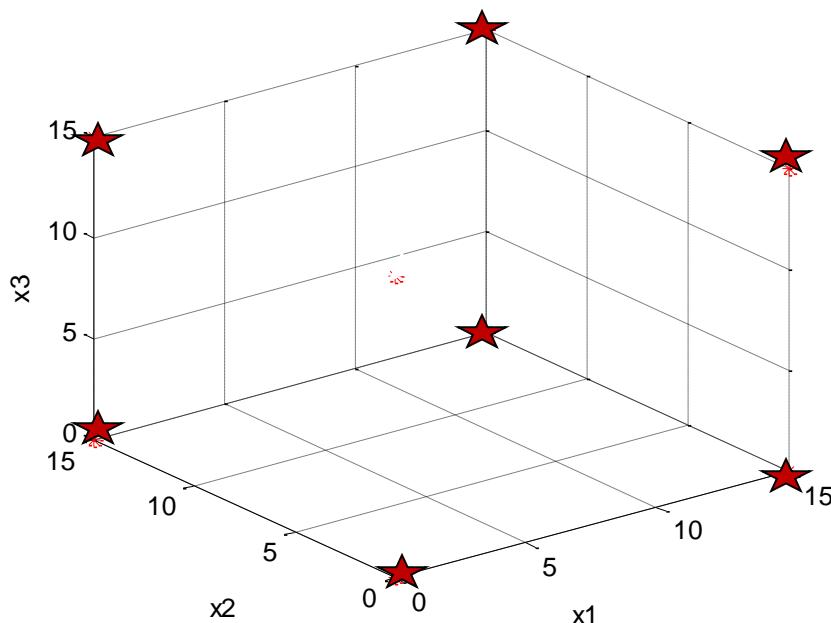
# Constructing a projection: Exercise 3

Example: 2-dimensional projection through a matrix A

$$X = \begin{bmatrix} 0 & 15 & 0 & 15 & 0 & 15 & 0 & 15 \\ 0 & 0 & 15 & 15 & 0 & 0 & 15 & 15 \\ 0 & 0 & 0 & 0 & 15 & 15 & 15 & 15 \end{bmatrix}$$

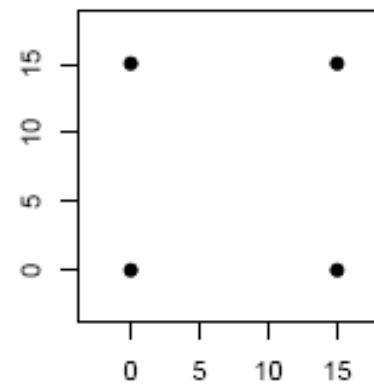
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

**Original data X**



$$Y = AX = \begin{bmatrix} 0 & 0 & 15 & 15 & 0 & 0 & 15 & 15 \\ 0 & 15 & 0 & 15 & 0 & 15 & 0 & 15 \end{bmatrix}$$

**Projected data Y**



The data are well grouped into 4 tiny clusters

# Constructing a projection

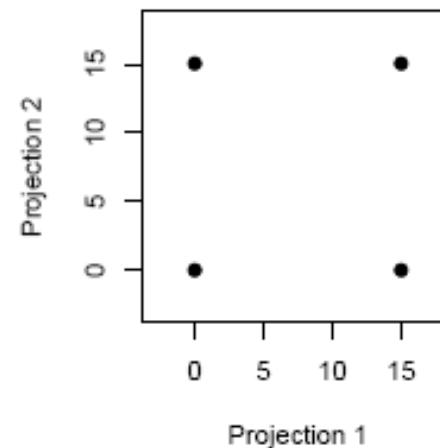
Example: 2-dimensional projection through a matrix A

$$X = \begin{bmatrix} 0 & 15 & 0 & 15 & 0 & 15 & 0 & 15 \\ 0 & 0 & 15 & 15 & 0 & 0 & 15 & 15 \\ 0 & 0 & 0 & 0 & 15 & 15 & 15 & 15 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{matrix} a^1 \\ a^2 \end{matrix}$$

The rows of  $A$  are composed of two orthonormal vectors:  $(a^1, a^2)$ .

The product of each  $a^j$  with each datapoint  $x^i$  corresponds to the coordinate of the image  $y^i$  of the point  $x^i$  in the projected space.



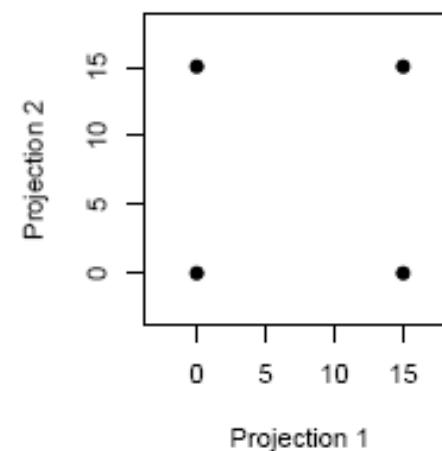
# Constructing a projection

Example: 2-dimensional projection through a matrix A

$$X = \begin{bmatrix} 0 & 15 & 0 & 15 & 0 & 15 & 0 & 15 \\ 0 & 0 & 15 & 15 & 0 & 0 & 15 & 15 \\ 0 & 0 & 0 & 0 & 15 & 15 & 15 & 15 \end{bmatrix} \quad A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

↑  
Projections 1 & 2

The columns of  $A$  represent the images (in the projected space) of the axes of the original space ( $\mathbb{R}^3$ ); in the example, the first two columns form a basis of  $\mathbb{R}^2$ .

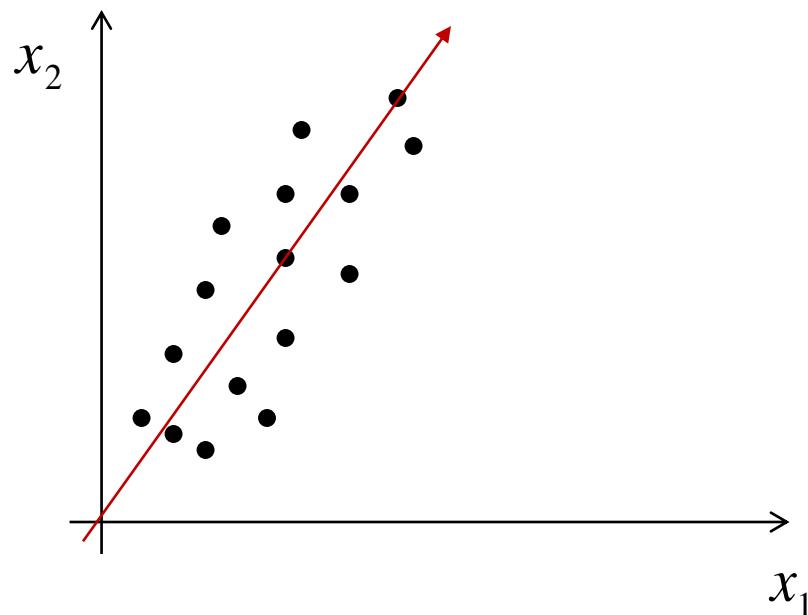


## PCA: *Reduction of dimensionality*

Infinite number of choices for projecting the data

→ need criteria to reduce the choice

1: minimum information loss (minimal reconstruction error)



What is the 2D to 1D projection that minimizes the reconstruction error?

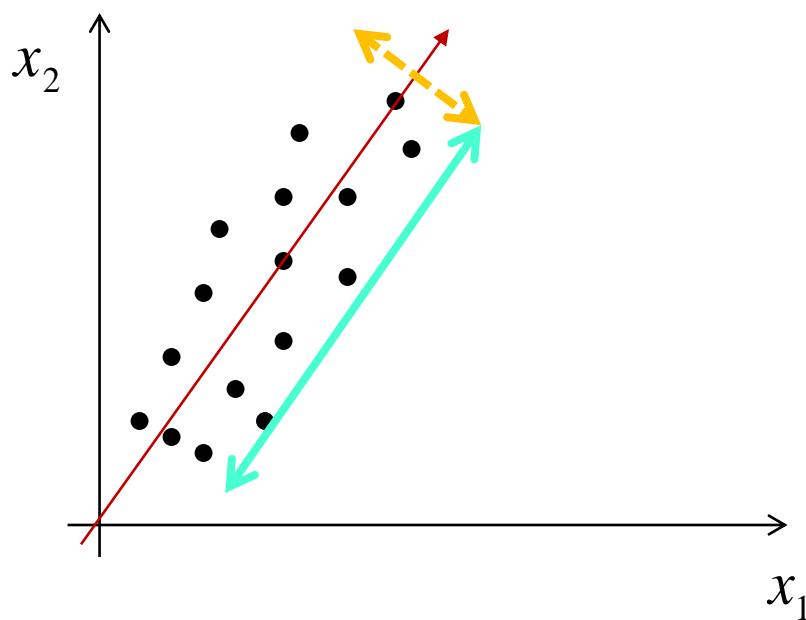
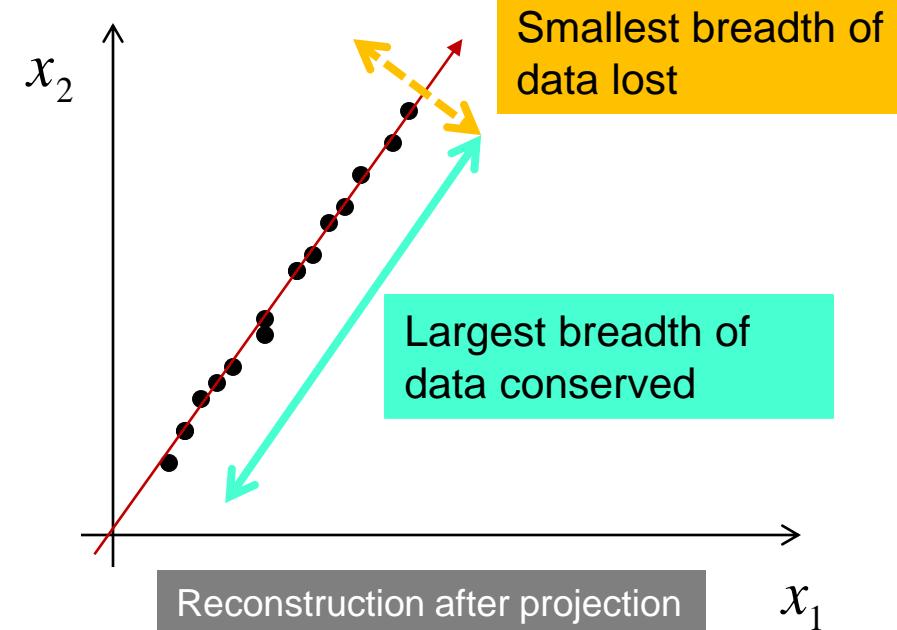
## PCA: *Reduction of dimensionality*

Infinite number of choices for projecting the data

→ need criteria to reduce the choice

1: minimum information loss(minimal reconstruction error)

2: equivalent to finding the direction with maximum variance



What is the 2D to 1D projection that minimizes the reconstruction error?